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NOMENCLATURE

A Matrix associated with z in z. - state eq. and with x in x - state eq.

B Matrix associated with v in z - state eq. and with u in x - state eq.

CM Vehicle center of mass

CM Nominal spinning steady state location of CM
s

c Vector form CM to CM
- S

c = (1 - K2)/(1 + Ki)

D Damping matrix in second order y - state eq-

DB  Structural damping matrix

D(T) Sampled-data matrix, eq. (3-17)

d. Structural damping of non-rotating boom in direction of ith axis
1

dm Differential mass element of flexible appendages

E 3x3 identity matrix

E 6  6x6 identity matrix

E(0) mxm forward gain matrix in continuous-data system

E(T) mxm forward gain matrix in sampled-data system

EW(T) Weighted E(T)

F Matrix associated with v in second order y - state eq.

F Applied and structural connection force vector acting on m s

f = 1/[I - yi( + 2)]

f 2 =1/(1 -y3 § Y, c)

G(O) mxn feedback matrix

G(T) mxn feedback gain matrix in sampled-data system

V



NOMENCLATURE (CONT'D)

G w(T) Weighted G(T)

H Angular momentum vector

H Weighting matrix in sampled-data system

II Inertia diadic of entire vehicle

I Moment of inertia matrix of entire vehicle

I. Principal moment of inertia of entire vehicle about ith vehicle axis
1

K Stiffness matrix in second order y - state eq.

K = (I2-I3)/I
1

K2  (3 - I1)/2

KB Elastic stiffness matrix of attached flexible booms
e

KB  Geometric stiffness matrix of attached flexible booms
g

k An integer

k. Stiffness of non-rotating boom in direction of ith axis
1

M Mass matrix in second order y - state eq.

m Mass of each flexible boom's tip mass

ms sth mass element of flexible appendage

036 3x6 null matrix

r Distance of tip mass' center of mass from CM

s Sr Vector from CM to spinning steady state location of m
S

r(t) mxl input vector

T Applied torque vector

T Sample period

Ti Applied (control) torque about ith vehicle axis

vi



NOMENC LATURE (Cont'd)

t = kT
0

u Forcing function (normalized torque) in x - state eq.

1 2
u, u Displacement of tip masses (of two flexible booms) from their spinning

steady locations to their instantaneous locations

B 1 2
u =U -U

"s Vector from spinning steady state location of ms to its instantaneous location

u Control vector for continuous system-c

u (t) mxl control vector
-c

v Forcing function vector

v. - Ti/Ii 2
1 11

w Variation in angular speed

W. Variation in angular speed about ith vehicle axis1

X Inertial position vector from an inertially fixed reference point to the
instantaneous location of CM

x [' 2' /3' 1' 0' 3 , state vector

x (t) nxl state vector
-C

X= 2l' 23 ' P 1' P2' P3]T  state vector

aij Control gain associated with Ti, C

Oij Control gain associated with Ti, w.

I. Distance from CM to tip mass along ith vehicle axis1

2
Yi - 2 m r/ 1

S. - d./mo

1 1ii

VIL



NOMENCLATURE (Cont'd)

e(T) Sampled-data matrix, eq. (3-18)

Sc(T) Sampled-data matrix, eq. (3-19)

X =(k + 1)T- 7

1 2
i =(ui - u )/2 2

1 1 2

S = r3/r 2

p Vector joining spinning steady state location of CM to each ms

. = k/m

7 =Qt
--I-

0 Angular displacement about ith vehicle axis

0 Nominal spin rate

w0 Rotation vector of entire vehicle

T
Transpose

Time derivation in inertial frame

o Time derivative in frame fixed to core rigid body

Differentiation with respect to T

Operator forming skew-symmetric matrix from column matrix
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TECHNICAL MEMORANDUM X-6485 i

DESIGN OF A DIGITAL CONTROLLER FOR SPINNING FLEXIBLE SPACECRAFT

Summary

A new approach to digital control system design is applied to the analysis and de-

sign of a practical onboard digital attitude control system for a class of spinning vehicles

characterized by a rigid body and two connected flexible appendages. The approach used

is to design a continuous-data control system that will provide a satisfactory system re-

sponse. Then, using the digital redesign method, a digital controller with onboard digital

computer is designed to provide a digital control system whose states are similar to those

of the continuous system at sampling instants. The simplicity of application of this ap-

proach is indicated by example. The example, using spinning Skylab parameters, is

used to substantiate the conclusions.

I. Introdiuction

In 1970,NASA initiated a set of studies of several Skylab configurations, includ-

ing a spinning vehicle configuration. (The spin would provide an artificial-gravity

environment to assess and compare the physiological benefits and problems of prolonged

zero-gravity and artificial-gravity environments.) The study proceeded generally along two

mutually reinforcing directions. In one case, a large-scale digital simulation of the

Presented as Paper 73-894 at the AIAA Guidance and Control Conference,
Key Biscayne, Fla., Aug. 20-22, 1973.

Indexes Categories: Spacecraft Attitude Dynamics and Control; Navigation,

Control, and Guidance Theory.
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spinning system of connected flexible and rigid structures was developed, first devis-

ing a program for obtaining the eigenvalues and eigenvectors and then simulating the

truncated equations for motion. (1), (2), (3) In order to develop faith in the response

of the large scale simulation and to obtain characteristic numerical values for the

control system parameters, a simplified analytically-tractable model was developed and

analyzed in detail. (4), (5) While the model was developed to meet Skylab demands, it is

applicable to other spinning bodies with flexible attached members. It consists of a

single rigid-core body with two attached flexible massless booms having tip masses

(Fig. 1-1). Active closed loop attitude control is implemented by applying control

torques to the vehicle to compensate for the effect of disturbance torques. (In the Skylab

example, existing Skylab onboard sensors and momentum exchange systems are used for

generating control error signals and torques. )(6)

The approach used is to design a continuous-data control system that will

provide a satisfactory system response. Then using several recently developed

techniques, the continuous control system n odel is redesigned to provide a digital

control system. The objective of the digital redesign is to provide a system whose

states are identical to those of the continuous system at sampling instants.

I. Equations of Motion

The spinning flexible vehicle is assumed to be modeled as shown in Fig. 1-1.

For the entire vehicle, equations of displacement and rotation are written using Newton-

Euler relations. The equations are based on the assumption that the axis of maximum

moment of inertia of the overall vehicle does not coincide with the desired spin axis --

usually an axis normal to the solar panels and pointed toward the sun. In that case, the

overall mass distribution of the system must be altered to align the two axes-hence, the
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inclusion of booms (assumed to be massless and flexible) with tip masses. It is assumed

that the booms are attached to the core rigid body at the axis of rotation of the overall

system. The basic coordinate system's origin is at the steady-state mass center of the

overall vehicle, and the axes coincide with the principal axes of inertia of the steady-state

configuration of the vehicle. (In steady-state, the vehicle rotates about the major

principal axis.)

The nonlinear equation defining the rotational motion of the overall vehicle

(Fig. 1-1) is obtained from the Euler relation and becomes

-0 dT- ir + p + x-.*#W+ j- 2xAdm (2-1)
where T is the applied torque vector, H is the avgular momentum vector, R is the

inertia diadic of the entire vehicle, u is the rotation vector of the entire vehicle, p is

a generic vector joining the spinning steady-state location of the vehicle center of mass (CM)

to each of the mass elements dm of the flexible appendages, the closed overdot ( )

represents the time derivative in the inertial frame, and the open overdot (0) represents

the time derivative in a frame that is fixed with respect to the core rigid body. The

nonlinear equation representing translational motion of each sth mass element (ms ) of

the flexible appendages is obtained from the Newton relation and becomes

FSms + +rs .. s
FS mS +r+ u X c )

s os o=m s (+c+2xc+x c +x ( xc) +or +

+ 2 wx ( +uos )+ x (rs +u) +x x (rs +u)] (2-2)

where F is the applied and structural connection force vector, X is the inertial

position vector from an inertially fixed reference point to the instantaneous location of

the CM, c is the vector from the CM to the nominal spinning steady state location of

the CMs, r s is a vector from CM S to the spinning steady state location of m s , and us

3



is a vector from t J.L ULg ,, ,,LU LULatiU[I of,, m to its actual instantaneous location.

If now these equations are linearized as perturbations about the spinning steady

state, perturbation equations (2-3) and (2-4) result. Only the rotational relations have

been retained, and the effect of the center of mass motion with respect to the body is

neglected. The contribution of mass center motion due to flexible appendage motion and

orbital dynamics is ignored. The resulting three linearized equations of motion are

written explicitely in matrix notation:

TB B BTT =Iw +Iw+wI+iwIQ+ m (2r u E - ru -u r )Q+

T.B .BT .BT ..B Bm(2r u E- ur - ru )C+ mr.u +mQru.  (2-3)

where I is the moment of inertia matrix of the entire vehicle, = [ , R2, ,3]T is the

nominal spin rate, w = [w, w,, w3 ] T is the variation of spin speed, E is an identity

matrix, m is the mass of each flexible boom's tip mass, u = ul - u2 , where u' and u 2

represent the displacement of the tip masses of each of the two flexible.booms from their

spinning steady state location to their instantaneous location, and r = [O, F, F ] represents

the distance of the tip mass center of mass fr< n the vehicle center of mass. A set of

three equations describes the skew symmetric mode of the attached booms and tip masses:
B B B B .1B -mu + (D + 2mi) + (Ke + m + )iu- v + m(a w+w r0i)r = 0 (2-4)

where KB = diag [kj, k2 , k3 ] and KB represent the elastic and geometric stiffness,e g

respectively, of the attached flexible booms (represented as massless cantilever beams

B-
with attached discrete tip masses), and DB= diag [d , d,, d3 ] is the structural damping.

Stretching of the booms due to centrifugal force is represented by KB.

Active closed loop control is implemented by applying control torques to the

vehicle. It is assumed that the 3-axis of the body-fixed coordinate frame must be held

fixed in inertial space. This is achieved by applying control torques to the vehicle to

4



compensate for the effect of disturbance torques. These control torques must in some

manner depend on error signals that are proportional both to the angle between the

3-axis and the inertial reference vector and to its time derivative. This information

can be generated if the spacecraft hardware includes, for example, sun sensors and

rate gyros and the sun is used in place of an inertial reference. The sun sensor measure

the angular rotations , 0~ (as also indicated for the simplified model of Fig. 1-1), and

rate gyros measure the angular velocities w , w2 . The control torques T 1 , T2 may be

provided by momentum exchange devices such as control moment gyroscopes and

augmented if necessary by a mass expulsion system; for simplicity it generally is

assumed that T3 = 0. (It is observed that the existing Skylab, which is used as a model

to obtain numerical results herein, has onboard sun sensors, rate gyros, CMG's, and

a mass expulsion system. )(6) A more complete derivation of the equations of motion is

included in Ref. 7.

A linear control postulate (termed Control Law 1) can be formulated as

i= l l a i+ l 1 12 jwJ (2-5)

where, from kinematic relations,

W,1 ' -1 0 a 0 0 0 1

S 0 -1 0 + - 0 0 ¢" (2-6)

w3  0 0 -1 .3 0 0 0 1

An estimate of numerical values for the control gains may be obtained by an analysis of

a simplified model of the vehicle. In that case - as shown subsequently - continuous-

data control system gains for the output feedback of Eq. (2-5) may be determined by

application of D-decomposition and parameter mapping techniques. (8) Alternately,

optimal gains (Control Law 2) may be determined for complete state feedback by a

5



linear quadratic loss program to minimize a performance index. (9) Then the continuous

control system model gains are altered to provide the desired system dynamic response

when it is modeled as a digital system.

When Eqs.(2-3), (2-4), and (2-6) are grouped in the conventional manner, the

following set of equations results, assuming the steady state spin n is about the 3-axis.

In this case KB = diag [m t?, 0, mna2].

My" + Dy' + Ky - - Fv (2-7)

where ' refers to differentiation with respect to T = Ot,

= i 9, 03 9 P2I5 I 31 T , (2-8)

v=[, v2 , T/v] [T T/Ip, T//I , T3/, 3L ]T (2-9)

and matrices M, D, K, and F are given by Eq. (2-10) through (2-13). The symbols used

are defined !.s

K = (1  - 13)/I, K2  (I3 - )/Iz, = 2>r2/I. ,i = (uL - u )/2 1

Ai = di/mQ,o =ki/qm?, (i = 1, 2, 3),5 r3/r .
1 1 1

In the steady state, the principal axes of inertia of the total vehicle coincide with the

1, 2, 3 axes and the principal moments of inertia are 11, Is, Is , respectively, with

1I < 12 I. The stiffness of the nonrotating booms in the directions of the 1, 2, 3

axes is represented by ki and the structural damping by d..1 1

-1 0 0 0 Y1  -V'1

0 +K 0 -y, 0 0I-K2

M= -Y1 0 0 0 0 y1 (2-10)

0. 0 1 3 0 0

0 - 1 1 0 0

0 0 0 1 0

6



0 -(1+K I) 0 2 yj 0 0

1+K 0 0 0 2y 0

0 0 0 0 YI7A3
D-0

(2-11)0 0 0 0 -2Y 3  0

-2t 0 0 A, -2 0

0 -2t 2 2 A2  0

-K 0 0 0 -ty, -Y

I+K
0 K2( ) 0 71 0 0

K= -Y 0 0 0 Y,(32+1) (2-12)K-

0 0 0 0 0 0

o 0 a2 0 0

-t 0 0 0 a2-1 0

1 0 0 0 0 0

F 0 1 0 0 0 (2-13)
0 0 0 1 0 0

If control is exerted only about the 1- and 3- axes, then

1 0 0 0 0 T

F=[0 0 0 0 0 (2-14)-0 0 0 1 0

and

-T
0- f O 0 0 f 'f

0-M- 0 0 0 0 0 (2-15)

0 § 2 t2 1 2 f2 7

7



f = 1/(1 - y3 - 2 c), (2-17)

c = (1 - K2)/(1 + K1 ) (2-18)

Eq. (2-7) may be cast in state equation form:

z= Az + By (2-19)

where
* T

_ = (2-20)

A 0 
-M _K -M-1D s.2-21)

B = [03 I- M-i F] (2-22)

and E6 is the 6 x 6 identity matrix and 0, is the 3 x 6 null matrix.

It has been shown that when 3 is sufficiently small that it may be ignored, the

equations of motion (2-7) uncouple into two sets of equations: one describing the wobble

motion (described by p3 amd w1, w 2 or cpi, cp) and one describingthe in-plane motion

(described by 4 , . 2, and w3 or p3 ), (3) The resulting equation for wobble dynamics can

be written as

x'= Ax + Bu (2-23)

where

x 0 1 29 ,3, , (P , 4I3] T (2-24)



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

A= 0 0 1+K, -Y (2-25)
1-y 1  1-y 1-7 1-1

0 -K z  0 -(1-K 2) 0 0

K+1 0 v-(o+1) 1+
1-y l-y' l-y, 1-yl

For control torque exerted only about the 1-axis,

U - v1 = T/IQ22  (2-26)

and

B - 0, 0, 0,-.1/(1- y ),0, -1/(- y)] T (2-27)

In the design examples that follow, numerical values typical of the spinning

Skylab configuration are used and repeated in the table. (3)

Table 2-1

It = 1. 25 x 10 6 kgmz r 1= 0 m - 227kg

I,= 6.90 x 106 kgm' r, =23.3m k, =k 3 = 146N/m

I3 = 7.10 x 10 6kgmz 7-3=-1. 53m kz -7. 4x10 4N/m1 1

d1 = d 3=0.04(k3m)2  dz=0.04(kam)2 -2 = 0. 6s - 1

Iii. Digital Approximation by Point-by-Point State Comparison

The problem considered in this paper is that of approximating a continuous-

data feedback system by inserting sample-and-hold devices, and then modifying the in-

put and the feedback gains of the system so that the response of the sampled-data model

is as close to that of the original system as possible.

Consider that the continuous-data system as shown in Fig. 3-1 is described by the

following time-invariant dynamic equations:

9



Stj Ax ci + B Itj) (3-1)
-c -c -c

u c(t) = E(O)r(t) - G(0)x c(t) (3-2)

where

x (t) = -nx 1 state vector
-c

u (t) - m x 1 control vector
-c

r(t) = m x 1 input vector

A - n x n coefficient matrix

B = nxm coefficient matrix

E(O) = m x m forward gain matrix

G(O) = m x n feedback matrix

The initial state is given by xc (to). Substituting Eq. (3-2) into Eq. (3-1) yields-c

k c(t) = [A - BG(O)] x (t) + BE(O)r(t) (3-3)-c -c

The solution of Eq. (3-3) for t *t o is

x c (t) = [A- B( ) (t-t (t o) +j e- BE(O)r(T)d T (3-4)
to

where

[A-BG(O)] (t-to) o 1 A  (35)
e - [A - BG(0)](t-t) (3-5)

j=0 j!
The block diagram of the sampled-data system which is to approximate the

system of Fig. 3-1 is shown in Fig. 3-2. The outputs of the sample-and hold-devices

are a series of step functions with amplitudes denoted by u (kT) for kT < t < (k + 1)T.
-s

The notations, G(T) and E(T), denote the feedback gain and the forward gain of the

sampled-data system, respectively. The dynamic equations for the sampled-data

model are:

s (t) = Ax (t) + Bu (kT), x (to) given (3-6)
-s -s -s -s

u (kT) = E(T)r(kT) - G(T)x s(kT) (3-7)-s 10

10



for kT<t < (k + 1)T, t 0 t.

The A and B matrices in Eq. (3-6) are identical to those of Eq. (3-1). Substitut-

ing Eq. (3-7) into Eq. (3-6) yields

is (t) = Ax s(t) + B[E(T)r (kT) - G(T)x s(kT)1 (3-8)

for kT It t (k + 1) T.

The solution of Eq. (3-8) with t - (k + 1)T and
to = kT is

( (k+1)T A(kT+T-r)
x [(k+1)T]= e -AT e )dr BG(T x (kT)

T

(k+1)T
+ eA (kT+T-T)d BE(T)r (kT) (3-9)

kT

The problem is to find E(T) and G(T) so that the states of the sampled-data

model are as close as possible to that of the continuous -data system at the sampling

instants, for a given input r(t). Furthermore, in order that the solution for E(T) is

independent of r(t) it is necessary to assume that r(r) "=r(kT) for kT<t <(k + 1)T.

Therefore, effectively, the input of the continuous-data system of Fig. 3-1 is assumed to

pass through a sample-and-hold device. The above assumption would not affect the solution

if r(T) has step functions as its elements. However, if the inputs are other than step

functions, the approximation is a good one for small sampling periods.

Now letting t o -= kT and t = (k + 1)T in Eq. (3-4), and assuming r(T) r(kT) over

one sampling period, we have

x [(k+ 1)T] = e[A-BG(0)JT x (kT)-C -Cx (kT)

(k+1)T

+ kT e [A-BG(O)I(kT+T-, )d7 BE(O)r (kT),

kT< t< (k + 1)T.

11



The responses of Eq. (3-9) and Eq. (3-10) will match at t - (k + 1)T for an

arbitrary initial state x (kT) and an arbitrary input r(kT), if and only if the following

two equations are satisfied:

A-BG(O)IT AT (k+1l)T A[kT+T-T ]dBG(T )  (3-11)
e A - B e e

kT

and

(k+1) T [A-BG(0)1(kT+T-T) d, BE (0)r(kT)
(k+1)T A(kT+T-7 ) d T BE(T)r (kT) )T G() ()(kT)

kT kT (3-12)

T T

e[A- BG(0 ) ]T = eAT - eAX dX BG(T) (3-13)

X BE(T) = e[A-BG(O)]kXdBE(O) (3-14)

Eqs. (3-13) and (3-14) may be written in the simplified matrix form,

D(T) -=e(T)G(T) 
(3-15)

and

S(T)E(T) - ec(T)E(0) 
(3-16)

where

D(T) = e [A - BG(O)]T_eAT 
(3-17)

12



e(T) = e? dxB (3-18)

T eA-BG(O)]X dB (3-19)
O (T) e dX B

0

In Eqs. (3-15) and (3-16) if the number of unknowns equals the number of equations,

m - n and if e(T) is nonsingular, then unique solutions of Eqs. (3-15) and (3-16) exist

and are given by

G(T) =- 8e'(T)D(T) (3-20)

and

E(T) = e -(T)ec(T)E(O) (3-21)

Generally speaking, the systems of equations of Eqs. (3-15) and (3-16) are

not consistent for the case where n >m, and thus not all of the states of the continuous

and sampled systems can be made to match at the end of each sampling period.

Although it is not possible to match all of the states it can be shown that it is

possible to match some of the states or algebraic sums of the states at each sampling

period. Multiplying both sides of Eq. (3-15) by a constant m x n matrix H gives,

HD(T) = - He(T)G(T) (3-22)

The above equation consists of mn scalar equations and mn unknowns. If H is chosen

such that He(T) is nonsingular, Eq. (3-22) may be solved for a solution, G w(T),

G (T) - [He(T)]-'HD(T) (3-23)

Similarly, Eq. (3-16) may be solved for a solution E w(T),

E (T) = [He(T)]-'He c (T)E (0) (3-24)

In general, the choice of the elements of H is governed by which combinations of the

states are to be matched.
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IV. Digital Redesign of the Wobble Dynamics

In this section the point-by-point method of digital redesign is applied to the

wobble dynamics of the spinning vehicle. If it is assumed that r3 = 0, the state equations

for the wobble dynamics can be written as Eqs. (2-23)-(2-27).

The control vector for the continuous system is

u c= E(0)r - G(0)x c  (4-1)

where E(O) and G(0) represent the forward and feedback gains, respectively.

Two control postulates are investigated for this system. Using Control Law 1

and numerical values from Table 2-1, one obtains

G(0)- [0, -4.63, 0, -1.27, 0, 0], E(0)=1. (4-2)

Control Law 2 requires feedback from each state and is written as

G(0) = -1.263, 0.777, 0.172, -2. 768, 1.792, 0.095], E(0) = 1. (4-3)

The control of the wobble dynamics is digitally redesigned with both control laws

and with T = 0. 2s and H = [1, 1, 1, 1, 1, 1]. The choice of H weighs all the states

equally and is natural for a single-input system. The gain matrices for the sampled-

data control system are obtained by using Eqs. (3-23) and (3-24), and are,

Control Law 1

G = [-0. 0049, -3. 95, 0. 048, -1. 08, -0. 52, 0. 0047], E = 0.86. (4-4)
W W

Control Law 2

G = [-0.92, 0.456, 0.196, -2.14, 1.13, 0.09], E = 0.728. (4-5)
W W

The continuous and sampled-data systems are simulated using both control laws.

It is found that in each case the states of the digital system closely match those of the

continuous system for this choice of sampling period. Figures 4-1 and 4-2 show the

state trajectories , and es for the continuous and sampled-data systems with Control I w 1.
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V. Optimal Regulation and Digital Redesign of the Twelfth Order Model

In this section the twelfth-order model is optimally regulated and digitally

redesigned by the point-by-point method of state comparison. The optimal regulation is

achieved by calculating the optimal control law associated with the linear regulator

design.

It has been determined that the overall system is uncontrollable with only one input

to one of the wobble axes. When perturbed, the , state changes to a new value which

means that the 03 state increases without bound as time increases. Since for spin about

the 3-axis the 03 state is unimportant, only control of the (3 state is of importance. An

additional input v. has consequently been provided to one of the spin axes to insure

controllability. Since it is of interest to regulate only $ and not ¢t about their zero

references, the state, 0 , is deleted when calculating the optimal feedback gains.

The state equations for the twelfth-order model are given by Ets. (2-19)-(2-22).

These equations are reduced to an eleventh-order system by deleting the state 03 . This

system is optimized by the linear quadratic loss criterion for the following weighting

matrices: Q = I, R = I. The 66th order algebraic Riccati equation associated with this

problem is solved by the eigenvector method to yield the following feedback gains (10)

G(0) = -0.513 0.302 -0.009 -0.094 -1.29 -1.783 .0820 0.0229 0.034 0.0021 -0.457
-0.043 -0.053 0.93 -1.82 -0.0515 -0.016 -0.058 -1.0 0.918 0.0043 0.0082 (5-1)

The digital redesign of this system is performed by use of the point-by-point method of

partial matching. The weighting matrix H is chosen as

1 1 0 0 1 1 10 0 0 1
0- 0 1 1 0 0 0 1 1 10 (5-2)

and the feedback gains for the digital system are determined for two different sampling

periods, T = 0. 2s and T = 0. 8s. The choice of H is such that matching is obtained for he

sum of the states of the wobble dynamics as well as the sum of the states of the spin

15



dynamics for each sampling instant. With T = 0. 2s the feedback gain matrix of the

sampled data system is

S-0. 442 0. 183 -0. 011 -0. 0495 -0.777

w \-0.043 -0.025 0.696 -1.53 -0.013

-1.41 0.450 0.0178 0.019 0.031 -0.434\

-0. 063 -0. 014 -0. 875 0. 85 0. 015 0. 004 (5-3)

with T - 0. 8s the feedback matrix is

G -0.332 0.095 -0.0045 0.0055 0.128 0.775

-0.032 0.026 -0.0015 -0.66 -0.125 -0.137

0.21 0.006 -0.0057 0.0017 -0.22

0.066 -0.51 0.548 -0.009 -0.025/ (5-4)

The simulation of the 12th order model of the Spinning Skylab (Table 2-1) is performed with

each of the above gains. Figures 5-1 through 5-3 show the results with T = 0. 2s. These

figures show the state trajectories for ¢1, 02, and 03 . Figures 5-4 through 5-6 show the

state trajectories for 1,, 02* s3 with T - 0. 8s, and Figure 5-7 shows the control v, with

T - 0. 8s. It is apparent that the point by point state comparison method of partial

matching yields acceptable redesign with T = 0. 2s as well as T = 0. 8s.
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IV. Conclusions

A practical onboard digital attitude control system for a class of spinning

vehicles characterized by a rigid body and two connected flexible appendages has been

designed and analyzed. A new approach to digital control system design, termed digital

redesign, has been utilized. The simplicity of application of this approach is indicated

by example. Whereas previously published reports have shown that the class of vehicles

under consideration can be stabilized successfully with continuous-data control systems,

this paper shows how that class of vehicles may in actual practice be stabilized and actively

controlled with an onboard digital computer. A numerical example, using spinning Skylab

parameters, has been utilized to substantiate the conclusions.
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Figure 4-1. State Trajectories X c(t) and Xls(t) for the Wobble Dynamics of the

Spinning Skylab.
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Figure 5-1. State Trajectories X1c(t) and Xls(t) for the 12th Order Model of the

Spinning Skylab, Digital Redesign (T - 0. 2s).
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Figure 5-2. State Trajectories X2c(t) and X2s(t) for the 12th Order Model of the

Spinning Skylab, Digital Redesign (T =0. 2s)
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Spinning Skylab, Digital Redesign (T = 0. 2s).
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Figure 5-4. State Trajectories X1c(t) and X1s(t) for the 12th Order Model of the

Spinning Skylab, Digital Redesign (T = 0. 8s).
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Figure 5-5. State Trajectories X2c(t) and X2s(t) for the 12th Order Model of the

Spinning Skylab, Digital Redesign (T = 0. 8s).
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Spinning Skylab, Digital Redesign (T = 0. 8s).
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